Abstract:Automated Vehicle License Plate (VLP) detection and recognition have ended up being a significant research issue as of late. VLP localization and recognition are some of the most essential techniques for managing traffic using digital techniques. In this paper, four smart systems are developed to recognize Egyptian vehicles license plates. Two systems are based on character recognition, which are (System1, Characters Recognition with Classical Machine Learning) and (System2, Characters Recognition with Deep Machine Learning). The other two systems are based on the whole plate recognition which are (System3, Whole License Plate Recognition with Classical Machine Learning) and (System4, Whole License Plate Recognition with Deep Machine Learning). We use object detection algorithms, and machine learning based object recognition algorithms. The performance of the developed systems has been tested on real images, and the experimental results demonstrate that the best detection accuracy rate for VLP is provided by using the deep learning method. Where the VLP detection accuracy rate is better than the classical system by 32%. However, the best detection accuracy rate for Vehicle License Plate Arabic Character (VLPAC) is provided by using the classical method. Where VLPAC detection accuracy rate is better than the deep learning-based system by 6%. Also, the results show that deep learning is better than the classical technique used in VLP recognition processes. Where the recognition accuracy rate is better than the classical system by 8%. Finally, the paper output recommends a robust VLP recognition system based on both statistical and deep machine learning.
Abstract:Background image subtraction algorithm is a common approach which detects moving objects in a video sequence by finding the significant difference between the video frames and the static background model. This paper presents a developed system which achieves vehicle detection by using background image subtraction algorithm based on blocks followed by deep learning data validation algorithm. The main idea is to segment the image into equal size blocks, to model the static reference background image (SRBI), by calculating the variance between each block pixels and each counterpart block pixels in the adjacent frame, the system implemented into four different methods: Absolute Difference, Image Entropy, Exclusive OR (XOR) and Discrete Cosine Transform (DCT). The experimental results showed that the DCT method has the highest vehicle detection accuracy.