Abstract:During the last decade, several research works have focused on providing novel deep learning methods in many application fields. However, few of them have investigated the weight initialization process for deep learning, although its importance is revealed in improving deep learning performance. This can be justified by the technical difficulties in proposing new techniques for this promising research field. In this paper, a survey related to weight initialization techniques for deep algorithms in remote sensing is conducted. This survey will help practitioners to drive further research in this promising field. To the best of our knowledge, this paper constitutes the first survey focusing on weight initialization for deep learning models.
Abstract:A sleepy driver is arguably much more dangerous on the road than the one who is speeding as he is a victim of microsleeps. Automotive researchers and manufacturers are trying to curb this problem with several technological solutions that will avert such a crisis. This article focuses on the detection of such micro sleep and drowsiness using neural network based methodologies. Our previous work in this field involved using machine learning with multi-layer perceptron to detect the same. In this paper, accuracy was increased by utilizing facial landmarks which are detected by the camera and that is passed to a Convolutional Neural Network (CNN) to classify drowsiness. The achievement with this work is the capability to provide a lightweight alternative to heavier classification models with more than 88% for the category without glasses, more than 85% for the category night without glasses. On average, more than 83% of accuracy was achieved in all categories. Moreover, as for model size, complexity and storage, there is a marked reduction in the new proposed model in comparison to the benchmark model where the maximum size is 75 KB. The proposed CNN based model can be used to build a real-time driver drowsiness detection system for embedded systems and Android devices with high accuracy and ease of use.