Abstract:Counterfactual data augmentation (CDA) is a method for controlling information or biases in training datasets by generating a complementary dataset with typically opposing biases. Prior work often either relies on hand-crafted rules or algorithmic CDA methods which can leave unwanted information in the augmented dataset. In this work, we show iterative CDA (ICDA) with initial, high-noise interventions can converge to a state with significantly lower noise. Our ICDA procedure produces a dataset where one target signal in the training dataset maintains high mutual information with a corresponding label and the information of spurious signals are reduced. We show training on the augmented datasets produces rationales on documents that better align with human annotation. Our experiments include six human produced datasets and two large-language model generated datasets.
Abstract:Rationales, snippets of extracted text that explain an inference, have emerged as a popular framework for interpretable natural language processing (NLP). Rationale models typically consist of two cooperating modules: a selector and a classifier with the goal of maximizing the mutual information (MMI) between the "selected" text and the document label. Despite their promises, MMI-based methods often pick up on spurious text patterns and result in models with nonsensical behaviors. In this work, we investigate whether counterfactual data augmentation (CDA), without human assistance, can improve the performance of the selector by lowering the mutual information between spurious signals and the document label. Our counterfactuals are produced in an unsupervised fashion using class-dependent generative models. From an information theoretic lens, we derive properties of the unaugmented dataset for which our CDA approach would succeed. The effectiveness of CDA is empirically evaluated by comparing against several baselines including an improved MMI-based rationale schema on two multi aspect datasets. Our results show that CDA produces rationales that better capture the signal of interest.