Abstract:In this work we present a deep learning approach to conduct hypothesis-free, transcriptomics-based matching of drugs for diseases. Our proposed neural network architecture is trained on approved drug-disease indications, taking as input the relevant disease and drug differential gene expression profiles, and learns to identify novel indications. We assemble an evaluation dataset of disease-drug indications spanning 68 diseases and evaluate in silico our approach against the most widely used transcriptomics-based matching baselines, CMap and the Characteristic Direction. Our results show a more than 200% improvement over both baselines in terms of standard retrieval metrics. We further showcase our model's ability to capture different genes' expressions interactions among drugs and diseases. We provide our trained models, data and code to predict with them at https://github.com/healx/dgem-nn-public.
Abstract:Voice Activity Detection (VAD) is a fundamental preprocessing step in automatic speech recognition. This is especially true within the broadcast industry where a wide variety of audio materials and recording conditions are encountered. Based on previous studies which indicate that xvector embeddings can be applied to a diverse set of audio classification tasks, we investigate the suitability of x-vectors in discriminating speech from noise. We find that the proposed x-vector based VAD system achieves the best reported score in detecting clean speech on AVA-Speech, whilst retaining robust VAD performance in the presence of noise and music. Furthermore, we integrate the x-vector based VAD system into an existing STT pipeline and compare its performance on multiple broadcast datasets against a baseline system with WebRTC VAD. Crucially, our proposed x-vector based VAD improves the accuracy of STT transcription on real-world broadcast audio