Abstract:Many NLP researchers rely on free computational services, such as Google Colab, to fine-tune their Transformer models, causing a limitation for hyperparameter optimization (HPO) in long-text classification due to the method having quadratic complexity and needing a bigger resource. In Indonesian, only a few works were found on long-text classification using Transformers. Most only use a small amount of data and do not report any HPO. In this study, using 18k news articles, we investigate which pretrained models are recommended to use based on the output length of the tokenizer. We then compare some hacks to shorten and enrich the sequences, which are the removals of stopwords, punctuation, low-frequency words, and recurring words. To get a fair comparison, we propose and run an efficient and dynamic HPO procedure that can be done gradually on a limited resource and does not require a long-running optimization library. Using the best hack found, we then compare 512, 256, and 128 tokens length. We find that removing stopwords while keeping punctuation and low-frequency words is the best hack. Some of our setups manage to outperform taking 512 first tokens using a smaller 128 or 256 first tokens which manage to represent the same information while requiring less computational resources. The findings could help developers to efficiently pursue optimal performance of the models using limited resources.
Abstract:The parallelism of Transformer-based models comes at the cost of their input max-length. Some studies proposed methods to overcome this limitation, but none of them reported the effectiveness of summarization as an alternative. In this study, we investigate the performance of document truncation and summarization in text classification tasks. Each of the two was investigated with several variations. This study also investigated how close their performances are to the performance of full-text. We used a dataset of summarization tasks based on Indonesian news articles (IndoSum) to do classification tests. This study shows how the summaries outperform the majority of truncation method variations and lose to only one. The best strategy obtained in this study is taking the head of the document. The second is extractive summarization. This study explains what happened to the result, leading to further research in order to exploit the potential of document summarization as a shortening alternative. The code and data used in this work are publicly available in https://github.com/mirzaalimm/TruncationVsSummarization.