Abstract:Human Pose Estimation is a thoroughly researched problem; however, most datasets focus on the side and front-view scenarios. We address the limitation by proposing a novel approach that tackles the challenges posed by extreme viewpoints and poses. We introduce a new method for synthetic data generation - RePoGen, RarE POses GENerator - with comprehensive control over pose and view to augment the COCO dataset. Experiments on a new dataset of real images show that adding RePoGen data to the COCO surpasses previous attempts to top-view pose estimation and significantly improves performance on the bottom-view dataset. Through an extensive ablation study on both the top and bottom view data, we elucidate the contributions of methodological choices and demonstrate improved performance. The code and the datasets are available on the project website.