Abstract:Unmanned aerial vehicle (UAV) photogrammetry allows for the creation of orthophotos and digital surface models (DSMs) of a terrain. However, DSMs of water bodies mapped with this technique reveal water surface distortions, preventing the use of photogrammetric data for accurate determination of water surface elevation (WSE). Firstly, we propose a new solution in which a convolutional neural network (CNN) is used as a WSE estimator from photogrammetric DSMs and orthophotos. Second, we improved the previously known "water-edge" method by filtering the outliers using a forward-backwards exponential weighted moving average. Further improvement in these two methods was achieved by performing a linear regression of the WSE values against chainage. The solutions estimate the uncertainty of the predictions. This is the first approach in which DL was used for this task. A brand new machine learning data set has been created. It was collected on a small lowland river in winter and summer conditions. It consists of 322 samples, each corresponding to a 10 by 10 meter area of the river channel and adjacent land. Each data set sample contains orthophoto and DSM arrays as input, along with a single ground-truth WSE value as output. The data set was supplemented with data collected by other researchers that compared the state-of-the-art methods for determining WSE using an UAV. The results of the DL solution were verified using k-fold cross-validation method. This provided an in-depth examination of the model's ability to perform on previously unseen data. The WSE RMSEs differ for each k-fold cross-validation subset and range from 1.7 cm up to 17.2 cm. The RMSE results of the improved "water-edge" method are at least six times lower than the RMSE results achieved by the conventional "water-edge" method. The results obtained by new methods are predominantly outperforming existing ones.
Abstract:Development of the new methods of surface water observation is crucial in the perspective of increasingly frequent extreme hydrological events related to global warming and increasing demand for water. Orthophotos and digital surface models (DSMs) obtained using UAV photogrammetry can be used to determine the Water Surface Elevation (WSE) of a river. However, this task is difficult due to disturbances of the water surface on DSMs caused by limitations of photogrammetric algorithms. In this study, machine learning was used to extract a WSE value from disturbed photogrammetric data. A brand new dataset has been prepared specifically for this purpose by hydrology and photogrammetry experts. The new method is an important step toward automating water surface level measurements with high spatial and temporal resolution. Such data can be used to validate and calibrate of hydrological, hydraulic and hydrodynamic models making hydrological forecasts more accurate, in particular predicting extreme and dangerous events such as floods or droughts. For our knowledge this is the first approach in which dataset was created for this purpose and deep learning models were used for this task. Additionally, neuroevolution algorithm was set to explore different architectures to find local optimal models and non-gradient search was performed to fine-tune the model parameters. The achieved results have better accuracy compared to manual methods of determining WSE from photogrammetric DSMs.