Abstract:Machine Learning (ML) algorithms have become increasingly popular for supporting Network Intrusion Detection Systems (NIDS). Nevertheless, extensive research has shown their vulnerability to adversarial attacks, which involve subtle perturbations to the inputs of the models aimed at compromising their performance. Recent proposals have effectively leveraged Graph Neural Networks (GNN) to produce predictions based also on the structural patterns exhibited by intrusions to enhance the detection robustness. However, the adoption of GNN-based NIDS introduces new types of risks. In this paper, we propose the first formalization of adversarial attacks specifically tailored for GNN in network intrusion detection. Moreover, we outline and model the problem space constraints that attackers need to consider to carry out feasible structural attacks in real-world scenarios. As a final contribution, we conduct an extensive experimental campaign in which we launch the proposed attacks against state-of-the-art GNN-based NIDS. Our findings demonstrate the increased robustness of the models against classical feature-based adversarial attacks, while highlighting their susceptibility to structure-based attacks.
Abstract:Machine learning algorithms are effective in several applications, but they are not as much successful when applied to intrusion detection in cyber security. Due to the high sensitivity to their training data, cyber detectors based on machine learning are vulnerable to targeted adversarial attacks that involve the perturbation of initial samples. Existing defenses assume unrealistic scenarios; their results are underwhelming in non-adversarial settings; or they can be applied only to machine learning algorithms that perform poorly for cyber security. We present an original methodology for countering adversarial perturbations targeting intrusion detection systems based on random forests. As a practical application, we integrate the proposed defense method in a cyber detector analyzing network traffic. The experimental results on millions of labelled network flows show that the new detector has a twofold value: it outperforms state-of-the-art detectors that are subject to adversarial attacks; it exhibits robust results both in adversarial and non-adversarial scenarios.