Abstract:Labeling datasets is a noteworthy challenge in machine learning, both in terms of cost and time. This research, however, leverages an efficient answer. By exploring label propagation in semi-supervised learning, we can significantly reduce the number of labels required compared to traditional methods. We employ a transductive label propagation method based on the manifold assumption for text classification. Our approach utilizes a graph-based method to generate pseudo-labels for unlabeled data for the text classification task, which are then used to train deep neural networks. By extending labels based on cosine proximity within a nearest neighbor graph from network embeddings, we combine unlabeled data into supervised learning, thereby reducing labeling costs. Based on previous successes in other domains, this study builds and evaluates this approach's effectiveness in sentiment analysis, presenting insights into semi-supervised learning.
Abstract:The requirement to trace and process moving objects in the contemporary era gradually increases since numerous applications quickly demand precise moving object locations. The Map-matching method is employed as a preprocessing technique, which matches a moving object point on a corresponding road. However, most of the GPS trajectory datasets include stay-points irregularity, which makes map-matching algorithms mismatch trajectories to irrelevant streets. Therefore, determining the stay-point region in GPS trajectory datasets results in better accurate matching and more rapid approaches. In this work, we cluster stay-points in a trajectory dataset with DBSCAN and eliminate redundant data to improve the efficiency of the map-matching algorithm by lowering processing time. We reckoned our proposed method's performance and exactness with a ground truth dataset compared to a fuzzy-logic based map-matching algorithm. Fortunately, our approach yields 27.39% data size reduction and 8.9% processing time reduction with the same accurate results as the previous fuzzy-logic based map-matching approach.