Abstract:Self-supervised learning (SSL) has greatly advanced speech representation learning, but multilingual SSL models remain constrained to languages encountered during pretraining. Retraining from scratch to incorporate new languages is computationally expensive, while sequential training without migitation strategies often leads to catastrophic forgetting. To address this, we propose MiLorE-SSL, a lightweight framework that combines LoRA modules with a soft mixture-of-experts (MoE) mechanism for efficient continual multilingual training. LoRA provides efficient low-rank adaptation, while soft MoE promotes flexible expert sharing across languages, reducing cross-lingual interference. To further mitigate forgetting, we introduce limited replay data from existing languages, avoiding reliance on large historical corpora. Experiments on ML-SUPERB demonstrate that MiLorE-SSL achieves strong performance in new languages and improves the ability in existing ones with only 2.14% trainable parameters.
Abstract:Self-supervised (SSL) models have shown great performance in various downstream tasks. However, they are typically developed for limited languages, and may encounter new languages in real-world. Developing a SSL model for each new language is costly. Thus, it is vital to figure out how to efficiently adapt existed SSL models to a new language without impairing its original abilities. We propose adaptation methods which integrate LoRA to existed SSL models to extend new language. We also develop preservation strategies which include data combination and re-clustering to retain abilities on existed languages. Applied to mHuBERT, we investigate their effectiveness on speech re-synthesis task. Experiments show that our adaptation methods enable mHuBERT to be applied to a new language (Mandarin) with MOS value increased about 1.6 and the relative value of WER reduced up to 61.72%. Also, our preservation strategies ensure that the performance on both existed and new languages remains intact.