Abstract:This research explores the interdisciplinary interaction between psychoanalysis and computer science, suggesting a mutually beneficial exchange. Indeed, psychoanalytic concepts can enrich technological applications involving unconscious, elusive aspects of the human factor, such as social media and other interactive digital platforms. Conversely, computer science, especially Artificial Intelligence (AI), can contribute quantitative concepts and methods to psychoanalysis, identifying patterns and emotional cues in human expression. In particular, this research aims to apply computer science methods to establish fundamental relationships between emotions and Lacanian discourses. Such relations are discovered in our approach via empirical investigation and statistical analysis, and are eventually validated in a theoretical (psychoanalytic) way. It is worth noting that, although emotions have been sporadically studied in Lacanian theory, to the best of our knowledge a systematic, detailed investigation of their role is missing. Such fine-grained understanding of the role of emotions can also make the identification of Lacanian discourses more effective and easy in practise. In particular, our methods indicate the emotions with highest differentiation power in terms of corresponding discourses; conversely, we identify for each discourse the most characteristic emotions it admits. As a matter of fact, we develop a method which we call Lacanian Discourse Discovery (LDD), that simplifies (via systematizing) the identification of Lacanian discourses in texts. Although the main contribution of this paper is inherently theoretical (psychoanalytic), it can also facilitate major practical applications in the realm of interactive digital systems. Indeed, our approach can be automated through Artificial Intelligence methods that effectively identify emotions (and corresponding discourses) in texts.
Abstract:This research investigates the effective incorporation of the human factor and user perception in text-based interactive media. In such contexts, the reliability of user texts is often compromised by behavioural and emotional dimensions. To this end, several attempts have been made in the state of the art, to introduce psychological approaches in such systems, including computational psycholinguistics, personality traits and cognitive psychology methods. In contrast, our method is fundamentally different since we employ a psychoanalysis-based approach; in particular, we use the notion of Lacanian discourse types, to capture and deeply understand real (possibly elusive) characteristics, qualities and contents of texts, and evaluate their reliability. As far as we know, this is the first time computational methods are systematically combined with psychoanalysis. We believe such psychoanalytic framework is fundamentally more effective than standard methods, since it addresses deeper, quite primitive elements of human personality, behaviour and expression which usually escape methods functioning at "higher", conscious layers. In fact, this research is a first attempt to form a new paradigm of psychoanalysis-driven interactive technologies, with broader impact and diverse applications. To exemplify this generic approach, we apply it to the case-study of fake news detection; we first demonstrate certain limitations of the well-known Myers-Briggs Type Indicator (MBTI) personality type method, and then propose and evaluate our new method of analysing user texts and detecting fake news based on the Lacanian discourses psychoanalytic approach.