Abstract:We consider a combinatorial multi-armed bandit problem for maximum value reward function under maximum value and index feedback. This is a new feedback structure that lies in between commonly studied semi-bandit and full-bandit feedback structures. We propose an algorithm and provide a regret bound for problem instances with stochastic arm outcomes according to arbitrary distributions with finite supports. The regret analysis rests on considering an extended set of arms, associated with values and probabilities of arm outcomes, and applying a smoothness condition. Our algorithm achieves a $O((k/\Delta)\log(T))$ distribution-dependent and a $\tilde{O}(\sqrt{T})$ distribution-independent regret where $k$ is the number of arms selected in each round, $\Delta$ is a distribution-dependent reward gap and $T$ is the horizon time. Perhaps surprisingly, the regret bound is comparable to previously-known bound under more informative semi-bandit feedback. We demonstrate the effectiveness of our algorithm through experimental results.
Abstract:We study a new non-stochastic federated multi-armed bandit problem with multiple agents collaborating via a communication network. The losses of the arms are assigned by an oblivious adversary that specifies the loss of each arm not only for each time step but also for each agent, which we call ``doubly adversarial". In this setting, different agents may choose the same arm in the same time step but observe different feedback. The goal of each agent is to find a globally best arm in hindsight that has the lowest cumulative loss averaged over all agents, which necessities the communication among agents. We provide regret lower bounds for any federated bandit algorithm under different settings, when agents have access to full-information feedback, or the bandit feedback. For the bandit feedback setting, we propose a near-optimal federated bandit algorithm called FEDEXP3. Our algorithm gives a positive answer to an open question proposed in Cesa-Bianchi et al. (2016): FEDEXP3 can guarantee a sub-linear regret without exchanging sequences of selected arm identities or loss sequences among agents. We also provide numerical evaluations of our algorithm to validate our theoretical results and demonstrate its effectiveness on synthetic and real-world datasets
Abstract:We consider the nonstochastic multi-agent multi-armed bandit problem with agents collaborating via a communication network with delays. We show a lower bound for individual regret of all agents. We show that with suitable regularizers and communication protocols, a collaborative multi-agent \emph{follow-the-regularized-leader} (FTRL) algorithm has an individual regret upper bound that matches the lower bound up to a constant factor when the number of arms is large enough relative to degrees of agents in the communication graph. We also show that an FTRL algorithm with a suitable regularizer is regret optimal with respect to the scaling with the edge-delay parameter. We present numerical experiments validating our theoretical results and demonstrate cases when our algorithms outperform previously proposed algorithms.