Abstract:This study aims to improve the efficiency and quality of career interviews conducted by nursing managers. To this end, we have been developing a slot-filling dialogue system that engages in pre-interviews to collect information on staff careers as a preparatory step before the actual interviews. Conventional slot-filling-based interview dialogue systems have limitations in the flexibility of information collection because the dialogue progresses based on predefined slot sets. We therefore propose a method that leverages large language models (LLMs) to dynamically generate new slots according to the flow of the dialogue, achieving more natural conversations. Furthermore, we incorporate abduction into the slot generation process to enable more appropriate and effective slot generation. To validate the effectiveness of the proposed method, we conducted experiments using a user simulator. The results suggest that the proposed method using abduction is effective in enhancing both information-collecting capabilities and the naturalness of the dialogue.
Abstract:This paper presents HRIChat, a framework for developing closed-domain chat dialogue systems. Being able to engage in chat dialogues has been found effective for improving communication between humans and dialogue systems. This paper focuses on closed-domain systems because they would be useful when combined with task-oriented dialogue systems in the same domain. HRIChat enables domain-dependent language understanding so that it can deal well with domain-specific utterances. In addition, HRIChat makes it possible to integrate state transition network-based dialogue management and reaction-based dialogue management. FoodChatbot, which is an application in the food and restaurant domain, has been developed and evaluated through a user study. Its results suggest that reasonably good systems can be developed with HRIChat. This paper also reports lessons learned from the development and evaluation of FoodChatbot.