Abstract:Homophily is a graph property describing the tendency of edges to connect similar nodes. There are several measures used for assessing homophily but all are known to have certain drawbacks: in particular, they cannot be reliably used for comparing datasets with varying numbers of classes and class size balance. To show this, previous works on graph homophily suggested several properties desirable for a good homophily measure, also noting that no existing homophily measure has all these properties. Our paper addresses this issue by introducing a new homophily measure - unbiased homophily - that has all the desirable properties and thus can be reliably used across datasets with different label distributions. The proposed measure is suitable for undirected (and possibly weighted) graphs. We show both theoretically and via empirical examples that the existing homophily measures have serious drawbacks while unbiased homophily has a desirable behavior for the considered scenarios. Finally, when it comes to directed graphs, we prove that some desirable properties contradict each other and thus a measure satisfying all of them cannot exist.
Abstract:The concept of diversity is widely used in various applications: from image or molecule generation to recommender systems. Thus, being able to properly measure diversity is important. This paper addresses the problem of quantifying diversity for a set of objects. First, we make a systematic review of existing diversity measures and explore their undesirable behavior in some cases. Based on this review, we formulate three desirable properties (axioms) of a reliable diversity measure: monotonicity, uniqueness, and continuity. We show that none of the existing measures has all three properties and thus these measures are not suitable for quantifying diversity. Then, we construct two examples of measures that have all the desirable properties, thus proving that the list of axioms is not self-contradicting. Unfortunately, the constructed examples are too computationally complex for practical use, thus we pose an open problem of constructing a diversity measure that has all the listed properties and can be computed in practice.
Abstract:For many graph-related problems, it can be essential to have a set of structurally diverse graphs. For instance, such graphs can be used for testing graph algorithms or their neural approximations. However, to the best of our knowledge, the problem of generating structurally diverse graphs has not been explored in the literature. In this paper, we fill this gap. First, we discuss how to define diversity for a set of graphs, why this task is non-trivial, and how one can choose a proper diversity measure. Then, for a given diversity measure, we propose and compare several algorithms optimizing it: we consider approaches based on standard random graph models, local graph optimization, genetic algorithms, and neural generative models. We show that it is possible to significantly improve diversity over basic random graph generators. Additionally, our analysis of generated graphs allows us to better understand the properties of graph distances: depending on which diversity measure is used for optimization, the obtained graphs may possess very different structural properties which gives insights about the sensitivity of the graph distance underlying the diversity measure.