Abstract:"Objective: The electrocardiogram (ECG) is currently the most widely used recording to diagnose cardiac disorders, including the most common supraventricular arrhythmia, such as atrial fibrillation (AF). However, different types of electrical disturbances, in which power-line interference (PLI) is a major problem, can mask and distort the original ECG morphology. This is a significant issue in the context of AF, because accurate characterization of fibrillatory waves (f-waves) is unavoidably required to improve current knowledge about its mechanisms. This work introduces a new algorithm able to reduce high levels of PLI and preserve, simultaneously, the original ECG morphology. Approach: The method is based on stationary wavelet transform shrinking and makes use of a new thresholding function designed to work successfully in a wide variety of scenarios. In fact, it has been validated in a general context with 48 ECG recordings obtained from pathological and non-pathological conditions, as well as in the particular context of AF, where 380 synthesized and 20 long-term real ECG recordings were analyzed. Main results: In both situations, the algorithm has reported a notably better performance than common methods designed for the same purpose. Moreover, its effectiveness has proven to be optimal for dealing with ECG recordings affected by AF, since f-waves remained almost intact after removing very high levels of noise. Significance: The proposed algorithm may facilitate a reliable characterization of the f-waves, preventing them from not being masked by the PLI nor distorted by an unsuitable filtering applied to ECG recordings with AF."
Abstract:Surgical ablation (SA) is the most effective procedure to terminate atrial fibrillation (AF) in patients requiring concomitant open heart surgery. However, considering the great stress provoked in the patients heart, along with the benefits of anticipating antiarrhythmic therapeutical decisions, preoperative prediction of long term failure of the procedure is an interesting clinical challenge. Hence, the present work introduces a novel algorithm to anticipate SA outcome after one year of follow up by just analyzing the surface ECG. The method firstly extracts fibrillatory waves reflected on standard lead V1 using an adaptive QRST cancellation approach. The resulting signal is then segmented into 1 s length intervals and wavelet energy is computed for all of them. Finally, the coefficient of variation of the time series obtained for the 7th scale is computed. Analyzing 20 second length preoperative ECG excerpts from 53 persistent AF patients undergoing concomitant openheart surgery, only the proposed method reported statistically significant differences between the patients who relapsed to AF and those who maintained sinus rhythm during the follow up. The algorithm also provided values of sensitivity, specificity, and accuracy between 10 and 20% better than the well established dominant atrial frequency and fibrillatory waves amplitude, thus suggesting to be a promising predictor of AF recurrence after SA.
Abstract:Analysis of intra-atrial electrograms (EGMs) nowadays constitutes the most common way to gain new insights about the mechanisms triggering and maintaining atrial fibrillation (AF). However, these recordings are highly contaminated by powerline interference (PLI) due to the large amount of electrical devices operating simultaneously in the electrophysiology laboratory. To remove this perturbation, conventional notch filtering has been widely used. However, this method adds artificial fractionation to the EGMs, thus concealing their accurate interpretation. Hence, the development of novel algorithms for PLI suppression in EGMs is still an unresolved challenge. Within this context, the present work introduces the joint application of common notch filtering and Wavelet denoising for enhanced PLI removal in AF EGMs. The algorithm was validated on a set of 100 unipolar EGM signals, which were synthesized with different noise levels. Original and denoised EGMs were compared in terms of a signed correlation index (SCI), computed both in time and frequency domains. Compared with the single use of notch filtering, improvements between 4 and 15% were reached with Wavelet denoising in both domains. As a consequence, the proposed algorithm was able to efficiently reduce high levels of PLI and simultaneously preserve the original morphology of AF EGMs.
Abstract:Objective: The most relevant source of signal contamination in the cardiac electrophysiology (EP) laboratory is the ubiquitous powerline interference (PLI). To reduce this perturbation, algorithms including common fixed bandwidth and adaptive notch filters have been proposed. Although such methods have proven to add artificial fractionation to intra atrial electrograms (EGMs), they are still frequently used. However, such morphological alteration can conceal the accurate interpretation of EGMs, specially to evaluate the mechanisms supporting atrial fibrillation (AF), which is the most common cardiac arrhythmia. Given the clinical relevance of AF, a novel algorithm aimed at reducing PLI on highly contaminated bipolar EGMs and, simultaneously, preserving their morphology is proposed. Approach: The method is based on the wavelet shrinkage and has been validated through customized indices on a set of synthesized EGMs to accurately quantify the achieved level of PLI reduction and signal morphology alteration. Visual validation of the algorithms performance has also been included for some real EGM excerpts. Main results: The method has outperformed common filtering-based and wavelet based strategies in the analyzed scenario. Moreover, it possesses advantages such as insensitivity to amplitude and frequency variations in the PLI, and the capability of joint removal of several interferences. Significance: The use of this algorithm in routine cardiac EP studies may enable improved and truthful evaluation of AF mechanisms.