Abstract:The chase is a fundamental tool for existential rules. Several chase variants are known, which differ on how they handle redundancies possibly caused by the introduction of nulls. Given a chase variant, the halting problem takes as input a set of existential rules and asks if this set of rules ensures the termination of the chase for any factbase. It is well-known that this problem is undecidable for all known chase variants. The related problem of boundedness asks if a given set of existential rules is bounded, i.e., whether there is a predefined upper bound on the number of (breadth-first) steps of the chase, independently from any factbase. This problem is already undecidable in the specific case of datalog rules. However, knowing that a set of rules is bounded for some chase variant does not help much in practice if the bound is unknown. Hence, in this paper, we investigate the decidability of the k-boundedness problem, which asks whether a given set of rules is bounded by an integer k. We prove that k-boundedness is decidable for three chase variants, namely the oblivious, semi-oblivious and restricted chase.