Abstract:Archival institutions and programs worldwide work to ensure that the records of governments, organizations, communities, and individuals are preserved for future generations as cultural heritage, as sources of rights, and as vehicles for holding the past accountable and to inform the future. This commitment is guaranteed through the adoption of strategic and technical measures for the long-term preservation of digital assets in any medium and form - textual, visual, or aural. Public and private archives are the largest providers of data big and small in the world and collectively host yottabytes of trusted data, to be preserved forever. Several aspects of retention and preservation, arrangement and description, management and administrations, and access and use are still open to improvement. In particular, recent advances in Artificial Intelligence (AI) open the discussion as to whether AI can support the ongoing availability and accessibility of trustworthy public records. This paper presents preliminary results of the InterPARES Trust AI (I Trust AI) international research partnership, which aims to (1) identify and develop specific AI technologies to address critical records and archives challenges; (2) determine the benefits and risks of employing AI technologies on records and archives; (3) ensure that archival concepts and principles inform the development of responsible AI; and (4) validate outcomes through a conglomerate of case studies and demonstrations.
Abstract:The effects of spike timing precision and dynamical behavior on error correction in spiking neurons were investigated. Stationary discharges -- phase locked, quasiperiodic, or chaotic -- were induced in a simulated neuron by presenting pacemaker presynaptic spike trains across a model of a prototypical inhibitory synapse. Reduced timing precision was modeled by jittering presynaptic spike times. Aftereffects of errors -- in this communication, missed presynaptic spikes -- were determined by comparing postsynaptic spike times between simulations identical except for the presence or absence of errors. Results show that the effects of an error vary greatly depending on the ongoing dynamical behavior. In the case of phase lockings, a high degree of presynaptic spike timing precision can provide significantly faster error recovery. For non-locked behaviors, isolated missed spikes can have little or no discernible aftereffects (or even serve to paradoxically reduce uncertainty in postsynaptic spike timing), regardless of presynaptic imprecision. This suggests two possible categories of error correction: high-precision locking with rapid recovery and low-precision non-locked with error immunity.