Abstract:Many parts of human body generate internal sound during biological processes, which are rich sources of information for understanding health and wellbeing. Despite a long history of development and usage of stethoscopes, there is still a lack of proper tools for recording internal body sound together with complementary sensors for long term monitoring. In this paper, we show our development of a wearable electronic stethoscope, coined Patchkeeper (PK), that can be used for internal body sound recording over long periods of time. Patchkeeper also integrates several state-of-the-art biological sensors, including electrocardiogram (ECG), photoplethysmography (PPG), and inertial measurement unit (IMU) sensors. As a wearable device, Patchkeeper can be placed on various parts of the body to collect sound from particular organs, including heart, lung, stomach, and joints etc. We show in this paper that several vital signals can be recorded simultaneously with high quality. As Patchkeeper can be operated directly by the user, e.g. without involving health care professionals, we believe it could be a useful tool for telemedicine and remote diagnostics.
Abstract:By using a computer keyboard as a finger recording device, we construct the largest existing dataset for gesture recognition via surface electromyography (sEMG), and use deep learning to achieve over 90% character-level accuracy on reconstructing typed text entirely from measured muscle potentials. We prioritize the temporal structure of the EMG signal instead of the spatial structure of the electrode layout, using network architectures inspired by those used for real-time spoken language transcription. Our architecture recognizes the rapid movements of natural computer typing, which occur at irregular intervals and often overlap in time. The extensive size of our dataset also allows us to study gesture recognition after synthetically downgrading the spatial or temporal resolution, showing the system capabilities necessary for real-time gesture recognition.