Abstract:Visual Quality Inspection plays a crucial role in modern manufacturing environments as it ensures customer safety and satisfaction. The introduction of Computer Vision (CV) has revolutionized visual quality inspection by improving the accuracy and efficiency of defect detection. However, traditional CV models heavily rely on extensive datasets for training, which can be costly, time-consuming, and error-prone. To overcome these challenges, synthetic images have emerged as a promising alternative. They offer a cost-effective solution with automatically generated labels. In this paper, we propose a pipeline for generating synthetic images using domain randomization. We evaluate our approach in three real inspection scenarios and demonstrate that an object detection model trained solely on synthetic data can outperform models trained on real images.
Abstract:Registration of histological serial sections is a challenging task. Serial sections exhibit distortions from sectioning. Missing information on how the tissue looked before cutting makes a realistic validation of 2D registrations impossible. This work proposes methods for more realistic evaluation of registrations. Firstly, we survey existing registration and validation efforts. Secondly, we present a methodology to generate test data for registrations. We distort an innately registered image stack in the manner similar to the cutting distortion of serial sections. Test cases are generated from existing 3D data sets, thus the ground truth is known. Thirdly, our test case generation premises evaluation of the registrations with known ground truths. Our methodology for such an evaluation technique distinguishes this work from other approaches. We present a full-series evaluation across six different registration methods applied to our distorted 3D data sets of animal lungs. Our distorted and ground truth data sets are made publicly available.