Abstract:Magnetic resonance spectroscopy (MRS) is an important technique in biomedical research and it has the unique capability to give a non-invasive access to the biochemical content (metabolites) of scanned organs. In the literature, the quantification (the extraction of the potential biomarkers from the MRS signals) involves the resolution of an inverse problem based on a parametric model of the metabolite signal. However, poor signal-to-noise ratio (SNR), presence of the macromolecule signal or high correlation between metabolite spectral patterns can cause high uncertainties for most of the metabolites, which is one of the main reasons that prevents use of MRS in clinical routine. In this paper, quantification of metabolites in MR Spectroscopic imaging using deep learning is proposed. A regression framework based on the Convolutional Neural Networks (CNN) is introduced for an accurate estimation of spectral parameters. The proposed model learns the spectral features from a large-scale simulated data set with different variations of human brain spectra and SNRs. Experimental results demonstrate the accuracy of the proposed method, compared to state of the art standard quantification method (QUEST), on concentration of 20 metabolites and the macromolecule.
Abstract:Semantic segmentation is an established while rapidly evolving field in medical imaging. In this paper we focus on the segmentation of brain Magnetic Resonance Images (MRI) into cerebral structures using convolutional neural networks (CNN). CNNs achieve good performance by finding effective high dimensional image features describing the patch content only. In this work, we propose different ways to introduce spatial constraints into the network to further reduce prediction inconsistencies. A patch based CNN architecture was trained, making use of multiple scales to gather contextual information. Spatial constraints were introduced within the CNN through a distance to landmarks feature or through the integration of a probability atlas. We demonstrate experimentally that using spatial information helps to reduce segmentation inconsistencies.