Abstract:Unobtrusive monitoring of distances between people indoors is a useful tool in the fight against pandemics. A natural resource to accomplish this are surveillance cameras. Unlike previous distance estimation methods, we use a single, overhead, fisheye camera with wide area coverage and propose two approaches. One method leverages a geometric model of the fisheye lens, whereas the other method uses a neural network to predict the 3D-world distance from people-locations in a fisheye image. To evaluate our algorithms, we collected a first-of-its-kind dataset using single fisheye camera, that comprises a wide range of distances between people (1-58 ft) and will be made publicly available. The algorithms achieve 1-2 ft distance error and over 95% accuracy in detecting social-distance violations.
Abstract:Reliable and cost-effective counting of people in large indoor spaces is a significant challenge with many applications. An emerging approach is to deploy multiple fisheye cameras mounted overhead to monitor the whole space. However, due to the overlapping fields of view, person re-identificaiton (PRID) is critical for the accuracy of counting. While PRID has been thoroughly researched for traditional rectilinear cameras, few methods have been proposed for fisheye cameras and their performance is comparatively lower. To close this performance gap, we propose a multi-feature framework for fisheye PRID where we combine deep-learning, color-based and location-based features by means of novel feature fusion. We evaluate the performance of our framework for various feature combinations on FRIDA, a public fisheye PRID dataset. The results demonstrate that our multi-feature approach outperforms recent appearance-based deep-learning methods by almost 18% points and location-based methods by almost 3% points in accuracy.
Abstract:Person re-identification (PRID) from side-mounted rectilinear-lens cameras is a well-studied problem. On the other hand, PRID from overhead fisheye cameras is new and largely unstudied, primarily due to the lack of suitable image datasets. To fill this void, we introduce the "Fisheye Re-IDentification Dataset with Annotations" (FRIDA), with 240k+ bounding-box annotations of people, captured by 3 time-synchronized, ceiling-mounted fisheye cameras in a large indoor space. Due to a field-of-view overlap, PRID in this case differs from a typical PRID problem, which we discuss in depth. We also evaluate the performance of 10 state-of-the-art PRID algorithms on FRIDA. We show that for 6 CNN-based algorithms, training on FRIDA boosts the performance by up to 11.64% points in mAP compared to training on a common rectilinear-camera PRID dataset.
Abstract:Smart buildings use occupancy sensing for various tasks ranging from energy-efficient HVAC and lighting to space-utilization analysis and emergency response. We propose a people counting system which uses a low-resolution thermal sensor. Unlike previous people-counting systems based on thermal sensors, we use an overhead tripwire configuration at entryways to detect and track transient entries or exits. We develop two distinct people counting algorithms for this configuration. To evaluate our algorithms, we have collected and labeled a low-resolution thermal video dataset using the proposed system. The dataset, the first of its kind, is public and available for download. We also propose new evaluation metrics that are more suitable for systems that are subject to drift and jitter.