Abstract:Training-conditional coverage guarantees in conformal prediction concern the concentration of the error distribution, conditional on the training data, below some nominal level. The conformal prediction methodology has recently been generalized to the covariate shift setting, namely, the covariate distribution changes between the training and test data. In this paper, we study the training-conditional coverage properties of a range of conformal prediction methods under covariate shift via a weighted version of the Dvoretzky-Kiefer-Wolfowitz (DKW) inequality tailored for distribution change. The result for the split conformal method is almost assumption-free, while the results for the full conformal and jackknife+ methods rely on strong assumptions including the uniform stability of the training algorithm.
Abstract:The training-conditional coverage performance of the conformal prediction is known to be empirically sound. Recently, there have been efforts to support this observation with theoretical guarantees. The training-conditional coverage bounds for jackknife+ and full-conformal prediction regions have been established via the notion of $(m,n)$-stability by Liang and Barber~[2023]. Although this notion is weaker than uniform stability, it is not clear how to evaluate it for practical models. In this paper, we study the training-conditional coverage bounds of full-conformal, jackknife+, and CV+ prediction regions from a uniform stability perspective which is known to hold for empirical risk minimization over reproducing kernel Hilbert spaces with convex regularization. We derive coverage bounds for finite-dimensional models by a concentration argument for the (estimated) predictor function, and compare the bounds with existing ones under ridge regression.
Abstract:This work concerns developing communication- and computation-efficient methods for large-scale multiple testing over networks, which is of interest to many practical applications. We take an asymptotic approach and propose two methods, proportion-matching and greedy aggregation, tailored to distributed settings. The proportion-matching method achieves the global BH performance yet only requires a one-shot communication of the (estimated) proportion of true null hypotheses as well as the number of p-values at each node. By focusing on the asymptotic optimal power, we go beyond the BH procedure by providing an explicit characterization of the asymptotic optimal solution. This leads to the greedy aggregation method that effectively approximate the optimal rejection regions at each node, while computation-efficiency comes from the greedy-type approach naturally. Extensive numerical results over a variety of challenging settings are provided to support our theoretical findings.
Abstract:This work concerns controlling the false discovery rate (FDR) in networks under communication constraints. We present sample-and-forward, a flexible and communication-efficient version of the Benjamini-Hochberg (BH) procedure for multihop networks with general topologies. Our method evidences that the nodes in a network do not need to communicate p-values to each other to achieve a decent statistical power under the global FDR control constraint. Consider a network with a total of $m$ p-values, our method consists of first sampling the (empirical) CDF of the p-values at each node and then forwarding $\mathcal{O}(\log m)$ bits to its neighbors. Under the same assumptions as for the original BH procedure, our method has both the provable finite-sample FDR control as well as competitive empirical detection power, even with a few samples at each node. We provide an asymptotic analysis of power under a mixture model assumption on the p-values.
Abstract:The Fixed-X knockoff filter is a flexible framework for variable selection with false discovery rate (FDR) control in linear models with arbitrary (non-singular) design matrices and it allows for finite-sample selective inference via the LASSO estimates. In this paper, we extend the theory of the knockoff procedure to tests with composite null hypotheses, which are usually more relevant to real-world problems. The main technical challenge lies in handling composite nulls in tandem with dependent features from arbitrary designs. We develop two methods for composite inference with the knockoffs, namely, shifted ordinary least-squares (S-OLS) and feature-response product perturbation (FRPP), building on new structural properties of test statistics under composite nulls. We also propose two heuristic variants of the S-OLS method that outperform the celebrated Benjamini-Hochberg (BH) procedure for composite nulls, which serves as a heuristic baseline under dependent test statistics. Finally, we analyze the loss in FDR when the original knockoff procedure is naively applied on composite tests.
Abstract:The Benjamini-Hochberg (BH) procedure is a celebrated method for multiple testing with false discovery rate (FDR) control. In this paper, we consider large-scale distributed networks where each node possesses a large number of p-values and the goal is to achieve the global BH performance in a communication-efficient manner. We propose that every node performs a local test with an adjusted test size according to the (estimated) global proportion of true null hypotheses. With suitable assumptions, our method is asymptotically equivalent to the global BH procedure. Motivated by this, we develop an algorithm for star networks where each node only needs to transmit an estimate of the (local) proportion of nulls and the (local) number of p-values to the center node; the center node then broadcasts a parameter (computed based on the global estimate and test size) to the local nodes. In the experiment section, we utilize existing estimators of the proportion of true nulls and consider various settings to evaluate the performance and robustness of our method.
Abstract:The knockoff filter, recently developed by Barber and Candes, is an effective procedure to perform variable selection with a controlled false discovery rate (FDR). We propose a private version of the knockoff filter by incorporating Gaussian and Laplace mechanisms, and show that variable selection with controlled FDR can be achieved. Simulations demonstrate that our setting has reasonable statistical power.