Abstract:Predicting hospital length of stay (LOS) reliably is an essential need for efficient resource allocation at hospitals. Traditional predictive modeling tools frequently have difficulty acquiring sufficient and diverse data because healthcare institutions have privacy rules in place. In our study, we modeled this problem as an empirical graph where nodes are the hospitals. This modeling approach facilitates collaborative model training by modeling decentralized data sources from different hospitals without extracting sensitive data outside of hospitals. A local model is trained on a node (hospital) by aiming the generalized total variation minimization (GTVMin). Moreover, we implemented and compared two different federated learning optimization algorithms named federated stochastic gradient descent (FedSGD) and federated averaging (FedAVG). Our results show that federated learning enables accurate prediction of hospital LOS while addressing privacy concerns without extracting data outside healthcare institutions.
Abstract:Graph neural networks (GNNs) have achieved extraordinary enhancements in various areas including the fields medical imaging and network neuroscience where they displayed a high accuracy in diagnosing challenging neurological disorders such as autism. In the face of medical data scarcity and high-privacy, training such data-hungry models remains challenging. Federated learning brings an efficient solution to this issue by allowing to train models on multiple datasets, collected independently by different hospitals, in fully data-preserving manner. Although both state-of-the-art GNNs and federated learning techniques focus on boosting classification accuracy, they overlook a critical unsolved problem: investigating the reproducibility of the most discriminative biomarkers (i.e., features) selected by the GNN models within a federated learning paradigm. Quantifying the reproducibility of a predictive medical model against perturbations of training and testing data distributions presents one of the biggest hurdles to overcome in developing translational clinical applications. To the best of our knowledge, this presents the first work investigating the reproducibility of federated GNN models with application to classifying medical imaging and brain connectivity datasets. We evaluated our framework using various GNN models trained on medical imaging and connectomic datasets. More importantly, we showed that federated learning boosts both the accuracy and reproducibility of GNN models in such medical learning tasks. Our source code is available at https://github.com/basiralab/reproducibleFedGNN.