Abstract:Segmenting multiple objects (e.g., organs) in medical images often requires an understanding of their topology, which simultaneously quantifies the shape of the objects and their positions relative to each other. This understanding is important for segmentation networks to generalize better with limited training data, which is common in medical image analysis. However, many popular networks were trained to optimize only pixel-wise performance, ignoring the topological correctness of the segmentation. In this paper, we introduce a new topology-aware loss function, which we call PI-Att, that explicitly forces the network to minimize the topological dissimilarity between the ground truth and prediction maps. We quantify the topology of each map by the persistence image representation, for the first time in the context of a segmentation network loss. Besides, we propose a new mechanism to adaptively calculate the persistence image at the end of each epoch based on the network's performance. This adaptive calculation enables the network to learn topology outline in the first epochs, and then topology details towards the end of training. The effectiveness of the proposed PI-Att loss is demonstrated on two different datasets for aorta and great vessel segmentation in computed tomography images.
Abstract:Encoder-decoder networks become a popular choice for various medical image segmentation tasks. When they are trained with a standard loss function, these networks are not explicitly enforced to preserve the shape integrity of an object in an image. However, this ability of the network is important to obtain more accurate results, especially when there is a low-contrast difference between the object and its surroundings. In response to this issue, this work introduces a new shape-aware loss function, which we name FourierLoss. This loss function relies on quantifying the shape dissimilarity between the ground truth and the predicted segmentation maps through the Fourier descriptors calculated on their objects, and penalizing this dissimilarity in network training. Different than the previous studies, FourierLoss offers an adaptive loss function with trainable hyperparameters that control the importance of the level of the shape details that the network is enforced to learn in the training process. This control is achieved by the proposed adaptive loss update mechanism, which end-to-end learns the hyperparameters simultaneously with the network weights by backpropagation. As a result of using this mechanism, the network can dynamically change its attention from learning the general outline of an object to learning the details of its contour points, or vice versa, in different training epochs. Working on 2879 computed tomography images of 93 subjects, our experiments revealed that the proposed adaptive shape-aware loss function led to statistically significantly better results for liver segmentation, compared to its counterparts.