Abstract:In the field of radiotherapy, accurate imaging and image registration are of utmost importance for precise treatment planning. Magnetic Resonance Imaging (MRI) offers detailed imaging without being invasive and excels in soft-tissue contrast, making it a preferred modality for radiotherapy planning. However, the high cost of MRI, longer acquisition time, and certain health considerations for patients pose challenges. Conversely, Computed Tomography (CT) scans offer a quicker and less expensive imaging solution. To bridge these modalities and address multimodal alignment challenges, we introduce an approach for enhanced monomodal registration using synthetic MRI images. Utilizing unpaired data, this paper proposes a novel method to produce these synthetic MRI images from CT scans, leveraging CycleGANs and feature extractors. By building upon the foundational work on Cycle-Consistent Adversarial Networks and incorporating advancements from related literature, our methodology shows promising results, outperforming several state-of-the-art methods. The efficacy of our approach is validated by multiple comparison metrics.
Abstract:Compressed sensing (CS) theory considers the restricted isometry property (RIP) as a sufficient condition for measurement matrix which guarantees the recovery of any sparse signal from its compressed measurements. The RIP condition also preserves enough information for classification of sparse symbols, even with fewer measurements. In this work, we utilize RIP bound as the cost function for training a simple neural network in order to exploit the near optimal measurements or equivalently near optimal features for classification of a known set of sparse symbols. As an example, we consider demodulation of pulse position modulation (PPM) signals. The results indicate that the proposed method has much better performance than the random measurements and requires less samples than the optimum matched filter demodulator, at the expense of some performance loss. Further, the proposed approach does not need equalizer for multipath channels in contrast to the conventional receiver.