Abstract:This paper examines the use of classical deep reinforcement learning (DRL) algorithms, DQN, DDQN, and Dueling DQN, in the strategy game So Long Sucker (SLS), a diplomacy-driven game defined by coalition-building and strategic betrayal. SLS poses unique challenges due to its blend of cooperative and adversarial dynamics, making it an ideal platform for studying multi-agent learning and game theory. The study's primary goal is to teach autonomous agents the game's rules and strategies using classical DRL methods. To support this effort, the authors developed a novel, publicly available implementation of SLS, featuring a graphical user interface (GUI) and benchmarking tools for DRL algorithms. Experimental results reveal that while considered basic by modern DRL standards, DQN, DDQN, and Dueling DQN agents achieved roughly 50% of the maximum possible game reward. This suggests a baseline understanding of the game's mechanics, with agents favoring legal moves over illegal ones. However, a significant limitation was the extensive training required, around 2000 games, for agents to reach peak performance, compared to human players who grasp the game within a few rounds. Even after prolonged training, agents occasionally made illegal moves, highlighting both the potential and limitations of these classical DRL methods in semi-complex, socially driven games. The findings establish a foundational benchmark for training agents in SLS and similar negotiation-based environments while underscoring the need for advanced or hybrid DRL approaches to improve learning efficiency and adaptability. Future research could incorporate game-theoretic strategies to enhance agent decision-making in dynamic multi-agent contexts.