Abstract:It is a challenging and complex task to acquire information from different regions of a disaster-affected area in a timely fashion. The extensive spread and reach of social media and networks allow people to share information in real-time. However, the processing of social media data and gathering of valuable information require a series of operations such as (1) processing each specific tweet for a text classification, (2) possible location determination of people needing help based on tweets, and (3) priority calculations of rescue tasks based on the classification of tweets. These are three primary challenges in developing an effective rescue scheduling operation using social media data. In this paper, first, we propose a deep learning model combining attention based Bi-directional Long Short-Term Memory (BLSTM) and Convolutional Neural Network (CNN) to classify the tweets under different categories. We use pre-trained crisis word vectors and global vectors for word representation (GLoVe) for capturing semantic meaning from tweets. Next, we perform feature engineering to create an auxiliary feature map which dramatically increases the model accuracy. In our experiments using real data sets from Hurricanes Harvey and Irma, it is observed that our proposed approach performs better compared to other classification methods based on Precision, Recall, F1-score, and Accuracy, and is highly effective to determine the correct priority of a tweet. Furthermore, to evaluate the effectiveness and robustness of the proposed classification model a merged dataset comprises of 4 different datasets from CrisisNLP and another 15 different disasters data from CrisisLex are used. Finally, we develop an adaptive multitask hybrid scheduling algorithm considering resource constraints to perform an effective rescue scheduling operation considering different rescue priorities.