Abstract:Emotion recognition has significant potential in healthcare and affect-sensitive systems such as brain-computer interfaces (BCIs). However, challenges such as the high cost of labeled data and variability in electroencephalogram (EEG) signals across individuals limit the applicability of EEG-based emotion recognition models across domains. These challenges are exacerbated in cross-dataset scenarios due to differences in subject demographics, recording devices, and presented stimuli. To address these issues, we propose a novel approach to improve cross-domain EEG-based emotion classification. Our method, Gradual Proximity-guided Target Data Selection (GPTDS), incrementally selects reliable target domain samples for training. By evaluating their proximity to source clusters and the models confidence in predicting them, GPTDS minimizes negative transfer caused by noisy and diverse samples. Additionally, we introduce Prediction Confidence-aware Test-Time Augmentation (PC-TTA), a cost-effective augmentation technique. Unlike traditional TTA methods, which are computationally intensive, PC-TTA activates only when model confidence is low, improving inference performance while drastically reducing computational costs. Experiments on the DEAP and SEED datasets validate the effectiveness of our approach. When trained on DEAP and tested on SEED, our model achieves 67.44% accuracy, a 7.09% improvement over the baseline. Conversely, training on SEED and testing on DEAP yields 59.68% accuracy, a 6.07% improvement. Furthermore, PC-TTA reduces computational time by a factor of 15 compared to traditional TTA methods. Our method excels in detecting both positive and negative emotions, demonstrating its practical utility in healthcare applications. Code available at: https://github.com/RyersonMultimediaLab/EmotionRecognitionUDA
Abstract:The classification of electrocardiogram (ECG) plays a crucial role in the development of an automatic cardiovascular diagnostic system. However, considerable variances in ECG signals between individuals is a significant challenge. Changes in data distribution limit cross-domain utilization of a model. In this study, we propose a solution to classify ECG in an unlabeled dataset by leveraging knowledge obtained from labeled source domain. We present a domain-adaptive deep network based on cross-domain feature discrepancy optimization. Our method comprises three stages: pre-training, cluster-centroid computing, and adaptation. In pre-training, we employ a Distributionally Robust Optimization (DRO) technique to deal with the vanishing worst-case training loss. To enhance the richness of the features, we concatenate three temporal features with the deep learning features. The cluster computing stage involves computing centroids of distinctly separable clusters for the source using true labels, and for the target using confident predictions. We propose a novel technique to select confident predictions in the target domain. In the adaptation stage, we minimize compacting loss within the same cluster, separating loss across different clusters, inter-domain cluster discrepancy loss, and running combined loss to produce a domain-robust model. Experiments conducted in both cross-domain and cross-channel paradigms show the efficacy of the proposed method. Our method achieves superior performance compared to other state-of-the-art approaches in detecting ventricular ectopic beats (V), supraventricular ectopic beats (S), and fusion beats (F). Our method achieves an average improvement of 11.78% in overall accuracy over the non-domain-adaptive baseline method on the three test datasets.
Abstract:R-peak detection is crucial in electrocardiogram (ECG) signal processing as it is the basis of heart rate variability analysis. The Pan-Tompkins algorithm is the most widely used QRS complex detector for the monitoring of many cardiac diseases including arrhythmia detection. However, the performance of the Pan-Tompkins algorithm in detecting the QRS complexes degrades in low-quality and noisy signals. This article introduces Pan-Tompkins++, an improved Pan-Tompkins algorithm. A bandpass filter with a passband of 5--18 Hz followed by an N-point moving average filter has been applied to remove the noise without discarding the significant signal components. Pan-Tompkins++ uses three thresholds to distinguish between R-peaks and noise peaks. Rather than using a generalized equation, different rules are applied to adjust the thresholds based on the pattern of the signal for the accurate detection of R-peaks under significant changes in signal pattern. The proposed algorithm reduces the False Positive and False Negative detections, and hence improves the robustness and performance of Pan-Tompkins algorithm. Pan-Tompkins++ has been tested on four open source datasets. The experimental results show noticeable improvement for both R-peak detection and execution time. We achieve 2.8% and 1.8% reduction in FP and FN, respectively, and 2.2% increase in F-score on average across four datasets, with 33% reduction in execution time. We show specific examples to demonstrate that in situations where the Pan-Tompkins algorithm fails to identify R-peaks, the proposed algorithm is found to be effective. The results have also been contrasted with other well-known R-peak detection algorithms.