Abstract:Leaf disease is a common fatal disease for plants. Early diagnosis and detection is necessary in order to improve the prognosis of leaf diseases affecting plant. For predicting leaf disease, several automated systems have already been developed using different plant pathology imaging modalities. This paper provides a systematic review of the literature on leaf disease-based models for the diagnosis of various plant leaf diseases via deep learning. The advantages and limitations of different deep learning models including Vision Transformer (ViT), Deep convolutional neural network (DCNN), Convolutional neural network (CNN), Residual Skip Network-based Super-Resolution for Leaf Disease Detection (RSNSR-LDD), Disease Detection Network (DDN), and YOLO (You only look once) are described in this review. The review also shows that the studies related to leaf disease detection applied different deep learning models to a number of publicly available datasets. For comparing the performance of the models, different metrics such as accuracy, precision, recall, etc. were used in the existing studies.