Abstract:One of the most serious corneal disorders, keratoconus is difficult to diagnose in its early stages and can result in blindness. This illness, which often appears in the second decade of life, affects people of all sexes and races. Convolutional neural networks (CNNs), one of the deep learning approaches, have recently come to light as particularly promising tools for the accurate and timely diagnosis of keratoconus. The purpose of this study was to evaluate how well different D-CNN models identified keratoconus-related diseases. To be more precise, we compared five different CNN-based deep learning architectures (DenseNet201, InceptionV3, MobileNetV2, VGG19, Xception). In our comprehensive experimental analysis, the DenseNet201-based model performed very well in keratoconus disease identification in our extensive experimental research. This model outperformed its D-CNN equivalents, with an astounding accuracy rate of 89.14% in three crucial classes: Keratoconus, Normal, and Suspect. The results demonstrate not only the stability and robustness of the model but also its practical usefulness in real-world applications for accurate and dependable keratoconus identification. In addition, D-CNN DenseNet201 performs extraordinarily well in terms of precision, recall rates, and F1 scores in addition to accuracy. These measures validate the model's usefulness as an effective diagnostic tool by highlighting its capacity to reliably detect instances of keratoconus and to reduce false positives and negatives.
Abstract:Leaf disease is a common fatal disease for plants. Early diagnosis and detection is necessary in order to improve the prognosis of leaf diseases affecting plant. For predicting leaf disease, several automated systems have already been developed using different plant pathology imaging modalities. This paper provides a systematic review of the literature on leaf disease-based models for the diagnosis of various plant leaf diseases via deep learning. The advantages and limitations of different deep learning models including Vision Transformer (ViT), Deep convolutional neural network (DCNN), Convolutional neural network (CNN), Residual Skip Network-based Super-Resolution for Leaf Disease Detection (RSNSR-LDD), Disease Detection Network (DDN), and YOLO (You only look once) are described in this review. The review also shows that the studies related to leaf disease detection applied different deep learning models to a number of publicly available datasets. For comparing the performance of the models, different metrics such as accuracy, precision, recall, etc. were used in the existing studies.