Abstract:To recognize the masked face, one of the possible solutions could be to restore the occluded part of the face first and then apply the face recognition method. Inspired by the recent image inpainting methods, we propose an end-to-end hybrid masked face recognition system, namely HiMFR, consisting of three significant parts: masked face detector, face inpainting, and face recognition. The masked face detector module applies a pretrained Vision Transformer (ViT\_b32) to detect whether faces are covered with masked or not. The inpainting module uses a fine-tune image inpainting model based on a Generative Adversarial Network (GAN) to restore faces. Finally, the hybrid face recognition module based on ViT with an EfficientNetB3 backbone recognizes the faces. We have implemented and evaluated our proposed method on four different publicly available datasets: CelebA, SSDMNV2, MAFA, {Pubfig83} with our locally collected small dataset, namely Face5. Comprehensive experimental results show the efficacy of the proposed HiMFR method with competitive performance. Code is available at https://github.com/mdhosen/HiMFR
Abstract:Realistic image restoration with high texture areas such as removing face masks is challenging. The state-of-the-art deep learning-based methods fail to guarantee high-fidelity, cause training instability due to vanishing gradient problems (e.g., weights are updated slightly in initial layers) and spatial information loss. They also depend on intermediary stage such as segmentation meaning require external mask. This paper proposes a blind mask face inpainting method using residual attention UNet to remove the face mask and restore the face with fine details while minimizing the gap with the ground truth face structure. A residual block feeds info to the next layer and directly into the layers about two hops away to solve the gradient vanishing problem. Besides, the attention unit helps the model focus on the relevant mask region, reducing resources and making the model faster. Extensive experiments on the publicly available CelebA dataset show the feasibility and robustness of our proposed model. Code is available at \url{https://github.com/mdhosen/Mask-Face-Inpainting-Using-Residual-Attention-Unet}