Abstract:In agriculture, automating the accurate tracking of fruits, vegetables, and fiber is a very tough problem. The issue becomes extremely challenging in dynamic field environments. Yet, this information is critical for making day-to-day agricultural decisions, assisting breeding programs, and much more. To tackle this dilemma, we introduce NTrack, a novel multiple object tracking framework based on the linear relationship between the locations of neighboring tracks. NTrack computes dense optical flow and utilizes particle filtering to guide each tracker. Correspondences between detections and tracks are found through data association via direct observations and indirect cues, which are then combined to obtain an updated observation. Our modular multiple object tracking system is independent of the underlying detection method, thus allowing for the interchangeable use of any off-the-shelf object detector. We show the efficacy of our approach on the task of tracking and counting infield cotton bolls. Experimental results show that our system exceeds contemporary tracking and cotton boll-based counting methods by a large margin. Furthermore, we publicly release the first annotated cotton boll video dataset to the research community.
Abstract:In this paper, we propose a novel variable rate deep compression architecture that operates on raw 3D point cloud data. The majority of learning-based point cloud compression methods work on a downsampled representation of the data. Moreover, many existing techniques require training multiple networks for different compression rates to generate consolidated point clouds of varying quality. In contrast, our network is capable of explicitly processing point clouds and generating a compressed description at a comprehensive range of bitrates. Furthermore, our approach ensures that there is no loss of information as a result of the voxelization process and the density of the point cloud does not affect the encoder/decoder performance. An extensive experimental evaluation shows that our model obtains state-of-the-art results, it is computationally efficient, and it can work directly with point cloud data thus avoiding an expensive voxelized representation.