Abstract:Effective surgical planning for breast cancer hinges on accurately predicting pathological complete response (pCR) to neoadjuvant chemotherapy (NAC). Diffusion-weighted MRI (DWI) and machine learning offer a non-invasive approach for early pCR assessment. However, most machine-learning models require manual tumor segmentation, a cumbersome and error-prone task. We propose a deep learning model employing "Size-Adaptive Lesion Weighting" for automatic DWI tumor segmentation to enhance pCR prediction accuracy. Despite histopathological changes during NAC complicating DWI image segmentation, our model demonstrates robust performance. Utilizing the BMMR2 challenge dataset, it matches human experts in pCR prediction pre-NAC with an area under the curve (AUC) of 0.76 vs. 0.796, and surpasses standard automated methods mid-NAC, with an AUC of 0.729 vs. 0.654 and 0.576. Our approach represents a significant advancement in automating breast cancer treatment planning, enabling more reliable pCR predictions without manual segmentation.
Abstract:Early prediction of pathological complete response (pCR) following neoadjuvant chemotherapy (NAC) for breast cancer plays a critical role in surgical planning and optimizing treatment strategies. Recently, machine and deep-learning based methods were suggested for early pCR prediction from multi-parametric MRI (mp-MRI) data including dynamic contrast-enhanced MRI and diffusion-weighted MRI (DWI) with moderate success. We introduce PD-DWI, a physiologically decomposed DWI machine-learning model to predict pCR from DWI and clinical data. Our model first decomposes the raw DWI data into the various physiological cues that are influencing the DWI signal and then uses the decomposed data, in addition to clinical variables, as the input features of a radiomics-based XGBoost model. We demonstrated the added-value of our PD-DWI model over conventional machine-learning approaches for pCR prediction from mp-MRI data using the publicly available Breast Multi-parametric MRI for prediction of NAC Response (BMMR2) challenge. Our model substantially improves the area under the curve (AUC), compared to the current best result on the leaderboard (0.8849 vs. 0.8397) for the challenge test set. PD-DWI has the potential to improve prediction of pCR following NAC for breast cancer, reduce overall mp-MRI acquisition times and eliminate the need for contrast-agent injection.