Abstract:Automatic detection of relevant groups of nodes in large real-world graphs, i.e. community detection, has applications in many fields and has received a lot of attention in the last twenty years. The most popular method designed to find overlapping communities (where a node can belong to several communities) is perhaps the clique percolation method (CPM). This method formalizes the notion of community as a maximal union of $k$-cliques that can be reached from each other through a series of adjacent $k$-cliques, where two cliques are adjacent if and only if they overlap on $k-1$ nodes. Despite much effort CPM has not been scalable to large graphs for medium values of $k$. Recent work has shown that it is possible to efficiently list all $k$-cliques in very large real-world graphs for medium values of $k$. We build on top of this work and scale up CPM. In cases where this first algorithm faces memory limitations, we propose another algorithm, CPMZ, that provides a solution close to the exact one, using more time but less memory.