Abstract:This paper presents a systematic literature review (SLR) on the explainability and interpretability of machine learning (ML) models within the context of predictive process mining, using the PRISMA framework. Given the rapid advancement of artificial intelligence (AI) and ML systems, understanding the "black-box" nature of these technologies has become increasingly critical. Focusing specifically on the domain of process mining, this paper delves into the challenges of interpreting ML models trained with complex business process data. We differentiate between intrinsically interpretable models and those that require post-hoc explanation techniques, providing a comprehensive overview of the current methodologies and their applications across various application domains. Through a rigorous bibliographic analysis, this research offers a detailed synthesis of the state of explainability and interpretability in predictive process mining, identifying key trends, challenges, and future directions. Our findings aim to equip researchers and practitioners with a deeper understanding of how to develop and implement more trustworthy, transparent, and effective intelligent systems for predictive process analytics.
Abstract:This paper introduces a comprehensive, multi-stage machine learning methodology that effectively integrates information systems and artificial intelligence to enhance decision-making processes within the domain of operations research. The proposed framework adeptly addresses common limitations of existing solutions, such as the neglect of data-driven estimation for vital production parameters, exclusive generation of point forecasts without considering model uncertainty, and lacking explanations regarding the sources of such uncertainty. Our approach employs Quantile Regression Forests for generating interval predictions, alongside both local and global variants of SHapley Additive Explanations for the examined predictive process monitoring problem. The practical applicability of the proposed methodology is substantiated through a real-world production planning case study, emphasizing the potential of prescriptive analytics in refining decision-making procedures. This paper accentuates the imperative of addressing these challenges to fully harness the extensive and rich data resources accessible for well-informed decision-making.
Abstract:As data-driven intelligent systems advance, the need for reliable and transparent decision-making mechanisms has become increasingly important. Therefore, it is essential to integrate uncertainty quantification and model explainability approaches to foster trustworthy business and operational process analytics. This study explores how model uncertainty can be effectively communicated in global and local post-hoc explanation approaches, such as Partial Dependence Plots (PDP) and Individual Conditional Expectation (ICE) plots. In addition, this study examines appropriate visualization analytics approaches to facilitate such methodological integration. By combining these two research directions, decision-makers can not only justify the plausibility of explanation-driven actionable insights but also validate their reliability. Finally, the study includes expert interviews to assess the suitability of the proposed approach and designed interface for a real-world predictive process monitoring problem in the manufacturing domain.