Abstract:In this paper, we present an algorithm of gaze prediction from Electroencephalography (EEG) data. EEG-based gaze prediction is a new research topic that can serve as an alternative to traditional video-based eye-tracking. Compared to the existing state-of-the-art (SOTA) method, we improved the root mean-squared-error of EEG-based gaze prediction to 53.06 millimeters, while reducing the training time to less than 33% of its original duration. Our source code can be found at https://github.com/AmCh-Q/CSCI6907Project
Abstract:In the field of EEG-based gaze prediction, the application of deep learning to interpret complex neural data poses significant challenges. This study evaluates the effectiveness of pre-processing techniques and the effect of additional depthwise separable convolution on EEG vision transformers (ViTs) in a pretrained model architecture. We introduce a novel method, the EEG Deeper Clustered Vision Transformer (EEG-DCViT), which combines depthwise separable convolutional neural networks (CNNs) with vision transformers, enriched by a pre-processing strategy involving data clustering. The new approach demonstrates superior performance, establishing a new benchmark with a Root Mean Square Error (RMSE) of 51.6 mm. This achievement underscores the impact of pre-processing and model refinement in enhancing EEG-based applications.