Abstract:In this paper, we introduce an efficient sparse Gaussian process (E-SGP) for the surrogate modelling of fluid mechanics. This novel Bayesian machine learning algorithm allows efficient model training using databases of different structures. It is a further development of the approximated sparse GP algorithm, combining the concept of efficient GP (E-GP) and variational energy free sparse Gaussian process (VEF-SGP). The developed E-SGP approach exploits the arbitrariness of inducing points and the monotonically increasing nature of the objective function with respect to the number of inducing points in VEF-SGP. By specifying the inducing points on the orthogonal grid/input subspace and using the Kronecker product, E-SGP significantly improves computational efficiency without imposing any constraints on the covariance matrix or increasing the number of parameters that need to be optimised during training. The E-SGP algorithm developed in this paper outperforms E-GP not only in scalability but also in model quality in terms of mean standardized logarithmic loss (MSLL). The computational complexity of E-GP suffers from the cubic growth regarding the growing structured training database. However, E-SGP maintains computational efficiency whilst the resolution of the model, (i.e., the number of inducing points) remains fixed. The examples show that E-SGP produces more accurate predictions in comparison with E-GP when the model resolutions are similar in both. E-GP benefits from more training data but comes with higher computational demands, while E-SGP achieves a comparable level of accuracy but is more computationally efficient, making E-SGP a potentially preferable choice for fluid mechanic problems. Furthermore, E-SGP can produce more reasonable estimates of model uncertainty, whilst E-GP is more likely to produce over-confident predictions.
Abstract:This paper proposes a novel fixed inducing points online Bayesian calibration (FIPO-BC) algorithm to efficiently learn the model parameters using a benchmark database. The standard Bayesian calibration (STD-BC) algorithm provides a statistical method to calibrate the parameters of computationally expensive models. However, the STD-BC algorithm scales very badly with the number of data points and lacks online learning capability. The proposed FIPO-BC algorithm greatly improves the computational efficiency and enables the online calibration by executing the calibration on a set of predefined inducing points. To demonstrate the procedure of the FIPO-BC algorithm, two tests are performed, finding the optimal value and exploring the posterior distribution of 1) the parameter in a simple function, and 2) the high-wave number damping factor in a scale-resolving turbulence model (SAS-SST). The results (such as the calibrated model parameter and its posterior distribution) of FIPO-BC with different inducing points are compared to those of STD-BC. It is found that FIPO-BC and STD-BC can provide very similar results, once the predefined set of inducing point in FIPO-BC is sufficiently fine. But, the FIPO-BC algorithm is at least ten times faster than the STD-BC algorithm. Meanwhile, the online feature of the FIPO-BC allows continuous updating of the calibration outputs and potentially reduces the workload on generating the database.