Abstract:Biosignals can be viewed as mixtures measuring particular physiological events, and blind source separation (BSS) aims to extract underlying source signals from mixtures. This paper proposes a self-supervised multi-encoder autoencoder (MEAE) to separate heartbeat-related source signals from photoplethysmogram (PPG), enhancing heart rate (HR) detection in noisy PPG data. The MEAE is trained on PPG signals from a large open polysomnography database without any pre-processing or data selection. The trained network is then applied to a noisy PPG dataset collected during the daily activities of nine subjects. The extracted heartbeat-related source signal significantly improves HR detection as compared to the original PPG. The absence of pre-processing and the self-supervised nature of the proposed method, combined with its strong performance, highlight the potential of BSS in biosignal analysis.
Abstract:The task of blind source separation (BSS) involves separating sources from a mixture without prior knowledge of the sources or the mixing system. This is a challenging problem that often requires making restrictive assumptions about both the mixing system and the sources. In this paper, we propose a novel method for addressing BSS of non-linear mixtures by leveraging the natural feature subspace specialization ability of multi-encoder autoencoders with fully self-supervised learning without strong priors. During the training phase, our method unmixes the input into the separate encoding spaces of the multi-encoder network and then remixes these representations within the decoder for a reconstruction of the input. Then to perform source inference, we introduce a novel encoding masking technique whereby masking out all but one of the encodings enables the decoder to estimate a source signal. To this end, we also introduce a so-called pathway separation loss that encourages sparsity between the unmixed encoding spaces throughout the decoder's layers and a so-called zero reconstruction loss on the decoder for coherent source estimations. In order to carefully evaluate our method, we conduct experiments on a toy dataset and with real-world biosignal recordings from a polysomnography sleep study for extracting respiration.