Abstract:Executable QR codes, also known as eQR codes or just sQRy, are a special kind of QR codes that embed programs conceived to run on mobile devices like smartphones. Since the program is directly encoded in binary form within the QR code, it can be executed even when the reading device is not provided with Internet access. The applications of this technology are manifold, and range from smart user guides to advisory systems. The first programming language made available for eQR is QRtree, which enables the implementation of decision trees aimed, for example, at guiding the user in operating/maintaining a complex machinery or for reaching a specific location. In this work, an additional language is proposed, we term QRind, which was specifically devised for Industry. It permits to integrate distinct computational blocks into the QR code, e.g., machine learning models to enable predictive maintenance and algorithms to ease machinery usage. QRind permits the Industry 4.0/5.0 paradigms to be implemented, in part, also in those cases where Internet is unavailable.
Abstract:The radio spectrum is characterized by a noticeable variability, which impairs performance and determinism of every wireless communication technology. To counteract this aspect, mechanisms like Minstrel are customarily employed in real Wi-Fi devices, and the adoption of machine learning for optimization is envisaged in next-generation Wi-Fi 8. All these approaches require communication quality to be monitored at runtime. In this paper, the effectiveness of simple techniques based on moving averages to estimate wireless link quality is analyzed, to assess their advantages and weaknesses. Results can be used, e.g., as a baseline when studying how artificial intelligence can be employed to mitigate unpredictability of wireless networks by providing reliable estimates about current spectrum conditions.