Abstract:The radio spectrum is characterized by a noticeable variability, which impairs performance and determinism of every wireless communication technology. To counteract this aspect, mechanisms like Minstrel are customarily employed in real Wi-Fi devices, and the adoption of machine learning for optimization is envisaged in next-generation Wi-Fi 8. All these approaches require communication quality to be monitored at runtime. In this paper, the effectiveness of simple techniques based on moving averages to estimate wireless link quality is analyzed, to assess their advantages and weaknesses. Results can be used, e.g., as a baseline when studying how artificial intelligence can be employed to mitigate unpredictability of wireless networks by providing reliable estimates about current spectrum conditions.
Abstract:Predicting the behavior of a wireless link in terms of, e.g., the frame delivery ratio, is a critical task for optimizing the performance of wireless industrial communication systems. This is because industrial applications are typically characterized by stringent dependability and end-to-end latency requirements, which are adversely affected by channel quality degradation. In this work, we studied two neural network models for Wi-Fi link quality prediction in dense indoor environments. Experimental results show that their accuracy outperforms conventional methods based on exponential moving averages, due to their ability to capture complex patterns about communications, including the effects of shadowing and multipath propagation, which are particularly pronounced in industrial scenarios. This highlights the potential of neural networks for predicting spectrum behavior in challenging operating conditions, and suggests that they can be exploited to improve determinism and dependability of wireless communications, fostering their adoption in the industry.
Abstract:The ability to predict the behavior of a wireless channel in terms of the frame delivery ratio is quite valuable, and permits, e.g., to optimize the operating parameters of a wireless network at runtime, or to proactively react to the degradation of the channel quality, in order to meet the stringent requirements about dependability and end-to-end latency that typically characterize industrial applications. In this work, prediction models based on the exponential moving average (EMA) are investigated in depth, which are proven to outperform other simple statistical methods and whose performance is nearly as good as artificial neural networks, but with dramatically lower computational requirements. Regarding the innovation and motivation of this work, a new model that we called EMA linear combination (ELC), is introduced, explained, and evaluated experimentally. Its prediction accuracy, tested on some databases acquired from a real setup based on Wi-Fi devices, showed that ELC brings tangible improvements over EMA in any experimental conditions, the only drawback being a slight increase in computational complexity.
Abstract:The ability to reliably predict the future quality of a wireless channel, as seen by the media access control layer, is a key enabler to improve performance of future industrial networks that do not rely on wires. Knowing in advance how much channel behavior may change can speed up procedures for adaptively selecting the best channel, making the network more deterministic, reliable, and less energy-hungry, possibly improving device roaming capabilities at the same time. To this aim, popular approaches based on moving averages and regression were compared, using multiple key performance indicators, on data captured from a real Wi-Fi setup. Moreover, a simple technique based on a linear combination of outcomes from different techniques was presented and analyzed, to further reduce the prediction error, and some considerations about lower bounds on achievable errors have been reported. We found that the best model is the exponential moving average, which managed to predict the frame delivery ratio with a 2.10\% average error and, at the same time, has lower computational complexity and memory consumption than the other models we analyzed.