Abstract:Keeping track of all relevant recent publications and experimental results for a research area is a challenging task. Prior work has demonstrated the efficacy of information extraction models in various scientific areas. Recently, several datasets have been released for the yet understudied materials science domain. However, these datasets focus on sub-problems such as parsing synthesis procedures or on sub-domains, e.g., solid oxide fuel cells. In this resource paper, we present MuLMS, a new dataset of 50 open-access articles, spanning seven sub-domains of materials science. The corpus has been annotated by domain experts with several layers ranging from named entities over relations to frame structures. We present competitive neural models for all tasks and demonstrate that multi-task training with existing related resources leads to benefits.
Abstract:Scientific publications follow conventionalized rhetorical structures. Classifying the Argumentative Zone (AZ), e.g., identifying whether a sentence states a Motivation, a Result or Background information, has been proposed to improve processing of scholarly documents. In this work, we adapt and extend this idea to the domain of materials science research. We present and release a new dataset of 50 manually annotated research articles. The dataset spans seven sub-topics and is annotated with a materials-science focused multi-label annotation scheme for AZ. We detail corpus statistics and demonstrate high inter-annotator agreement. Our computational experiments show that using domain-specific pre-trained transformer-based text encoders is key to high classification performance. We also find that AZ categories from existing datasets in other domains are transferable to varying degrees.