Abstract:This paper proposes a novel training method to improve the robustness of Extractive Question Answering (EQA) models. Previous research has shown that existing models, when trained on EQA datasets that include unanswerable questions, demonstrate a significant lack of robustness against distribution shifts and adversarial attacks. Despite this, the inclusion of unanswerable questions in EQA training datasets is essential for ensuring real-world reliability. Our proposed training method includes a novel loss function for the EQA problem and challenges an implicit assumption present in numerous EQA datasets. Models trained with our method maintain in-domain performance while achieving a notable improvement on out-of-domain datasets. This results in an overall F1 score improvement of 5.7 across all testing sets. Furthermore, our models exhibit significantly enhanced robustness against two types of adversarial attacks, with a performance decrease of only about a third compared to the default models.
Abstract:The development of large high-quality datasets and high-performing models have led to significant advancements in the domain of Extractive Question Answering (EQA). This progress has sparked considerable interest in exploring unanswerable questions within the EQA domain. Training EQA models with unanswerable questions helps them avoid extracting misleading or incorrect answers for queries that lack valid responses. However, manually annotating unanswerable questions is labor-intensive. To address this, we propose AGent, a novel pipeline that automatically creates new unanswerable questions by re-matching a question with a context that lacks the necessary information for a correct answer. In this paper, we demonstrate the usefulness of this AGent pipeline by creating two sets of unanswerable questions from answerable questions in SQuAD and HotpotQA. These created question sets exhibit low error rates. Additionally, models fine-tuned on these questions show comparable performance with those fine-tuned on the SQuAD 2.0 dataset on multiple EQA benchmarks.
Abstract:Machine Reading Comprehension (MRC) models tend to take advantage of spurious correlations (also known as dataset bias or annotation artifacts in the research community). Consequently, these models may perform the MRC task without fully comprehending the given context and question, which is undesirable since it may result in low robustness against distribution shift. This paper delves into the concept of answer-position bias, where a significant percentage of training questions have answers located solely in the first sentence of the context. We propose a Single-Sentence Reader as a new approach for addressing answer position bias in MRC. We implement this approach using six different models and thoroughly analyze their performance. Remarkably, our proposed Single-Sentence Readers achieve results that nearly match those of models trained on conventional training sets, proving their effectiveness. Our study also discusses several challenges our Single-Sentence Readers encounter and proposes a potential solution.
Abstract:Pretrained language models have achieved super-human performances on many Machine Reading Comprehension (MRC) benchmarks. Nevertheless, their relative inability to defend against adversarial attacks has spurred skepticism about their natural language understanding. In this paper, we ask whether training with unanswerable questions in SQuAD 2.0 can help improve the robustness of MRC models against adversarial attacks. To explore that question, we fine-tune three state-of-the-art language models on either SQuAD 1.1 or SQuAD 2.0 and then evaluate their robustness under adversarial attacks. Our experiments reveal that current models fine-tuned on SQuAD 2.0 do not initially appear to be any more robust than ones fine-tuned on SQuAD 1.1, yet they reveal a measure of hidden robustness that can be leveraged to realize actual performance gains. Furthermore, we find that the robustness of models fine-tuned on SQuAD 2.0 extends to additional out-of-domain datasets. Finally, we introduce a new adversarial attack to reveal artifacts of SQuAD 2.0 that current MRC models are learning.