Abstract:Class imbalance poses a significant challenge in classification tasks, where traditional approaches often lead to biased models and unreliable predictions. Undersampling and oversampling techniques have been commonly employed to address this issue, yet they suffer from inherent limitations stemming from their simplistic approach such as loss of information and additional biases respectively. In this paper, we propose a novel framework that leverages learning theory and concentration inequalities to overcome the shortcomings of traditional solutions. We focus on understanding the uncertainty in a class-dependent manner, as captured by confidence bounds that we directly embed into the learning process. By incorporating class-dependent estimates, our method can effectively adapt to the varying degrees of imbalance across different classes, resulting in more robust and reliable classification outcomes. We empirically show how our framework provides a promising direction for handling imbalanced data in classification tasks, offering practitioners a valuable tool for building more accurate and trustworthy models.
Abstract:Human-Computer Interaction has been shown to lead to improvements in machine learning systems by boosting model performance, accelerating learning and building user confidence. In this work, we aim to alleviate the expectation that human annotators adapt to the constraints imposed by traditional labels by allowing for extra flexibility in the form that supervision information is collected. For this, we propose a human-machine learning interface for binary classification tasks which enables human annotators to utilise counterfactual examples to complement standard binary labels as annotations for a dataset. Finally we discuss the challenges in future extensions of this work.