Abstract:Tiny Machine Learning (TinyML) is a branch of Machine Learning (ML) that constitutes a bridge between the ML world and the embedded system ecosystem (i.e., Internet of Things devices, embedded devices, and edge computing units), enabling the execution of ML algorithms on devices constrained in terms of memory, computational capabilities, and power consumption. Video Streaming Analysis (VSA), one of the most interesting tasks of TinyML, consists in scanning a sequence of frames in a streaming manner, with the goal of identifying interesting patterns. Given the strict constraints of these tiny devices, all the current solutions rely on performing a frame-by-frame analysis, hence not exploiting the temporal component in the stream of data. In this paper, we present StreamTinyNet, the first TinyML architecture to perform multiple-frame VSA, enabling a variety of use cases that requires spatial-temporal analysis that were previously impossible to be carried out at a TinyML level. Experimental results on public-available datasets show the effectiveness and efficiency of the proposed solution. Finally, StreamTinyNet has been ported and tested on the Arduino Nicla Vision, showing the feasibility of what proposed.
Abstract:TinyML is a novel area of machine learning that gained huge momentum in the last few years thanks to the ability to execute machine learning algorithms on tiny devices (such as Internet-of-Things or embedded systems). Interestingly, research in this area focused on the efficient execution of the inference phase of TinyML models on tiny devices, while very few solutions for on-device learning of TinyML models are available in the literature due to the relevant overhead introduced by the learning algorithms. The aim of this paper is to introduce a new type of adaptive TinyML solution that can be used in tasks, such as the presented \textit{Tiny Speaker Verification} (TinySV), that require to be tackled with an on-device learning algorithm. Achieving this goal required (i) reducing the memory and computational demand of TinyML learning algorithms, and (ii) designing a TinyML learning algorithm operating with few and possibly unlabelled training data. The proposed TinySV solution relies on a two-layer hierarchical TinyML solution comprising Keyword Spotting and Adaptive Speaker Verification module. We evaluated the effectiveness and efficiency of the proposed TinySV solution on a dataset collected expressly for the task and tested the proposed solution on a real-world IoT device (Infineon PSoC 62S2 Wi-Fi BT Pioneer Kit).