Abstract:In recent years, machine learning has witnessed extensive adoption across various sectors, yet its application in medical image-based disease detection and diagnosis remains challenging due to distribution shifts in real-world data. In practical settings, deployed models encounter samples that differ significantly from the training dataset, especially in the health domain, leading to potential performance issues. This limitation hinders the expressiveness and reliability of deep learning models in health applications. Thus, it becomes crucial to identify methods capable of producing reliable uncertainty estimation in the context of distribution shifts in the health sector. In this paper, we explore the feasibility of using cutting-edge Bayesian and non-Bayesian methods to detect distributionally shifted samples, aiming to achieve reliable and trustworthy diagnostic predictions in segmentation task. Specifically, we compare three distinct uncertainty estimation methods, each designed to capture either unimodal or multimodal aspects in the posterior distribution. Our findings demonstrate that methods capable of addressing multimodal characteristics in the posterior distribution, offer more dependable uncertainty estimates. This research contributes to enhancing the utility of deep learning in healthcare, making diagnostic predictions more robust and trustworthy.
Abstract:In this paper we present a practical Bayesian self-supervised learning method with Cyclical Stochastic Gradient Hamiltonian Monte Carlo (cSGHMC). Within this framework, we place a prior over the parameters of a self-supervised learning model and use cSGHMC to approximate the high dimensional and multimodal posterior distribution over the embeddings. By exploring an expressive posterior over the embeddings, Bayesian self-supervised learning produces interpretable and diverse representations. Marginalizing over these representations yields a significant gain in performance, calibration and out-of-distribution detection on a variety of downstream classification tasks. We provide experimental results on multiple classification tasks on four challenging datasets. Moreover, we demonstrate the effectiveness of the proposed method in out-of-distribution detection using the SVHN and CIFAR-10 datasets.