Abstract:Mobile smartphones compactly provide sensors such as cameras, IMUs, GNSS measurement units, and wireless and wired communication channels required for robotics projects. They are affordable, portable, and programmable, which makes them ideal for testing, data acquisition, controlling mobile robots, and many other robotic applications. A robotic system is proposed in this paper, consisting of an Android phone, a microcontroller board attached to the phone via USB, and a remote wireless controller station. In the data acquisition mode, the Android device can record a dataset of a diverse configuration of multiple cameras, IMUs, GNSS units, and external USB ADC channels in the rawest format used for, but not limited to, pose estimation and scene reconstruction applications. In robot control mode, the Android phone, a microcontroller board, and other peripherals constitute the mobile or stationary robotic system. This system is controlled using a remote server connected over Wi-Fi or Bluetooth. Experiments show that although the SLAM and AR applications can utilize the acquired data, the proposed system can pave the way for more advanced algorithms for processing these noisy and sporadic measurements. Moreover, the characteristics of the communication media are studied, and two example robotic projects, which involve controlling a toy car and a quadcopter, are included.
Abstract:Compared to regular cameras, Dynamic Vision Sensors or Event Cameras can output compact visual data based on a change in the intensity in each pixel location asynchronously. In this paper, we study the application of current image-based SLAM techniques to these novel sensors. To this end, the information in adaptively selected event windows is processed to form motion-compensated images. These images are then used to reconstruct the scene and estimate the 6-DOF pose of the camera. We also propose an inertial version of the event-only pipeline to assess its capabilities. We compare the results of different configurations of the proposed algorithm against the ground truth for sequences of two publicly available event datasets. We also compare the results of the proposed event-inertial pipeline with the state-of-the-art and show it can produce comparable or more accurate results provided the map estimate is reliable.