Abstract:Forecasting rail congestion is crucial for efficient mobility in transport systems. We present rail congestion forecasting using reports from passengers collected through a transit application. Although reports from passengers have received attention from researchers, ensuring a sufficient volume of reports is challenging due to passenger's reluctance. The limited number of reports results in the sparsity of the congestion label, which can be an issue in building a stable prediction model. To address this issue, we propose a semi-supervised method for congestion forecasting for trains, or SURCONFORT. Our key idea is twofold: firstly, we adopt semi-supervised learning to leverage sparsely labeled data and many unlabeled data. Secondly, in order to complement the unlabeled data from nearby stations, we design a railway network-oriented graph and apply the graph to semi-supervised graph regularization. Empirical experiments with actual reporting data show that SURCONFORT improved the forecasting performance by 14.9% over state-of-the-art methods under the label sparsity.