Abstract:We study the problem of learning mixtures of linear dynamical systems (MLDS) from input-output data. This mixture setting allows us to leverage observations from related dynamical systems to improve the estimation of individual models. Building on spectral methods for mixtures of linear regressions, we propose a moment-based estimator that uses tensor decomposition to estimate the impulse response of component models of the mixture. The estimator improves upon existing tensor decomposition approaches for MLDS by utilizing the entire length of the observed trajectories. We provide sample complexity bounds for estimating MLDS in the presence of noise, in terms of both $N$ (number of trajectories) and $T$ (trajectory length), and demonstrate the performance of our estimator through simulations.
Abstract:Modern data sets, such as those in healthcare and e-commerce, are often derived from many individuals or systems but have insufficient data from each source alone to separately estimate individual, often high-dimensional, model parameters. If there is shared structure among systems however, it may be possible to leverage data from other systems to help estimate individual parameters, which could otherwise be non-identifiable. In this paper, we assume systems share a latent low-dimensional parameter space and propose a method for recovering $d$-dimensional parameters for $N$ different linear systems, even when there are only $T<d$ observations per system. To do so, we develop a three-step algorithm which estimates the low-dimensional subspace spanned by the systems' parameters and produces refined parameter estimates within the subspace. We provide finite sample subspace estimation error guarantees for our proposed method. Finally, we experimentally validate our method on simulations with i.i.d. regression data and as well as correlated time series data.