Abstract:Automatic image anomaly detection is important for quality inspection in the manufacturing industry. The usual unsupervised anomaly detection approach is to train a model for each object class using a dataset of normal samples. However, a more realistic problem is zero-/few-shot anomaly detection where zero or only a few normal samples are available. This makes the training of object-specific models challenging. Recently, large foundation vision-language models have shown strong zero-shot performance in various downstream tasks. While these models have learned complex relationships between vision and language, they are not specifically designed for the tasks of anomaly detection. In this paper, we propose the Few-shot/zero-shot Anomaly Detection Engine (FADE) which leverages the vision-language CLIP model and adjusts it for the purpose of industrial anomaly detection. Specifically, we improve language-guided anomaly segmentation 1) by adapting CLIP to extract multi-scale image patch embeddings that are better aligned with language and 2) by automatically generating an ensemble of text prompts related to industrial anomaly detection. 3) We use additional vision-based guidance from the query and reference images to further improve both zero-shot and few-shot anomaly detection. On the MVTec-AD (and VisA) dataset, FADE outperforms other state-of-the-art methods in anomaly segmentation with pixel-AUROC of 89.6% (91.5%) in zero-shot and 95.4% (97.5%) in 1-normal-shot. Code is available at https://github.com/BMVC-FADE/BMVC-FADE.
Abstract:As face recognition algorithms become more accurate and get deployed more widely, it becomes increasingly important to ensure that the algorithms work equally well for everyone. We study the geographic performance differentials-differences in false acceptance and false rejection rates across different countries-when comparing selfies against photos from ID documents. We show how to mitigate geographic performance differentials using sampling strategies despite large imbalances in the dataset. Using vanilla domain adaptation strategies to fine-tune a face recognition CNN on domain-specific doc-selfie data improves the performance of the model on such data, but, in the presence of imbalanced training data, also significantly increases the demographic bias. We then show how to mitigate this effect by employing sampling strategies to balance the training procedure.