Equipe de Logique Mathematique, Universite Paris Diderot - Paris 7, France
Abstract:The universal-algebraic approach has proved a powerful tool in the study of the complexity of CSPs. This approach has previously been applied to the study of CSPs with finite or (infinite) omega-categorical templates, and relies on two facts. The first is that in finite or omega-categorical structures A, a relation is primitive positive definable if and only if it is preserved by the polymorphisms of A. The second is that every finite or omega-categorical structure is homomorphically equivalent to a core structure. In this paper, we present generalizations of these facts to infinite structures that are not necessarily omega-categorical. (This abstract has been severely curtailed by the space constraints of arXiv -- please read the full abstract in the article.) Finally, we present applications of our general results to the description and analysis of the complexity of CSPs. In particular, we give general hardness criteria based on the absence of polymorphisms that depend on more than one argument, and we present a polymorphism-based description of those CSPs that are first-order definable (and therefore can be solved in polynomial time).
Abstract:Many fundamental problems in artificial intelligence, knowledge representation, and verification involve reasoning about sets and relations between sets and can be modeled as set constraint satisfaction problems (set CSPs). Such problems are frequently intractable, but there are several important set CSPs that are known to be polynomial-time tractable. We introduce a large class of set CSPs that can be solved in quadratic time. Our class, which we call EI, contains all previously known tractable set CSPs, but also some new ones that are of crucial importance for example in description logics. The class of EI set constraints has an elegant universal-algebraic characterization, which we use to show that every set constraint language that properly contains all EI set constraints already has a finite sublanguage with an NP-hard constraint satisfaction problem.